Modeling the Mechanical Properties of Heat-Treated Mg-Zn-RE-Zr-Ca-Sr Alloys with the Artificial Neural Network and the Regression Model

نویسندگان

چکیده

In this study, an artificial neural network approach and a regression model are adopted to predict the mechanical properties of heat-treated Mg-Zn-RE-Zr-Ca-Sr magnesium alloys. The dataset for (ANN) modeling is generated by investigating microhardness alloys using Vickers hardness tests. A back-propagation (BP) established experimental data that enable prediction as function composition heat treatment process. input variables BP Ca Sr contents, ageing temperature time. output variable corresponds microhardness. optimal acquired optimizing number hidden layer nodes. results indicate reliable correlation coefficient above 0.95 architecture (4-8-1), which has high level accuracy prediction. addition, second-order polynomial developed based on least squares method. determination coefficients Fisher’s criterion capable Furthermore, supplemental experiments conducted check model, suggesting predictions well in accordance with results. Therefore, both models have predicting

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

the evaluation of language related engagment and task related engagment with the purpose of investigating the effect of metatalk and task typology

abstract while task-based instruction is considered as the most effective way to learn a language in the related literature, it is oversimplified on various grounds. different variables may affect how students are engaged with not only the language but also with the task itself. the present study was conducted to investigate language and task related engagement on the basis of the task typolog...

15 صفحه اول

Neural network application for prediction mechanical properties of Mg-Al-Zn alloys

Purpose: The paper presents results of the research connected with the development of new approach based on the neural network to predict chemical composition and cooling rate for the mechanical properties of the Mg-Al-Zn cast alloys. The independent variables on the model are chemical composition of Mg-Al-Zn cast alloys and cooling rate. The dependent parameters are hardness, ultimate compress...

متن کامل

modification of nanoclay for improving the physico-mechanical properties of dental adhesives

هدف اصلی این مطالعه تهیه یک سامانه نوین چسب عاجی دندانی بر پایه نانورس پیوند شده با پلی متاکریلیک اسید، نانورس پیوند شده با پلی اکریلیک اسید، مخلوط نانوسیلیکا و نانورس پیوند شده با پلی متاکریلیک اسید، مخلوط نانوسیلیکا و نانورس پیوند شده با پلی اکریلیک اسید و نانورس پیوند شده با کیتوسان اصلاح شده با گلایسیدیل متاکریلات است. پیوند پلی متاکریلیک اسید و پلی اکریلیک اسید بر ری سطح نانورس در حضور و ...

Addition of Zn to the ternary Mg-Ca-Sr alloys significantly improves their antibacterial property.

Most of the magnesium (Mg) alloys possess excellent biocompatibility, mechanical property and biodegradability in orthopedic applications. However, these alloys may suffer from bacterial infections due to their insufficient antibacterial capability. In order to reduce the post-surgical infections, a series of biocompatible Mg-1Ca-0.5Sr-xZn (x=0, 2, 4, 6) alloys were fabricated with the addition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Crystals

سال: 2022

ISSN: ['2073-4352']

DOI: https://doi.org/10.3390/cryst12060754